

ANSTO's new SYMO plant uses Synroc Technology to Immobilize Nuclear Medicine Production Waste

Pamela Naidoo-Ameglio,

Group Executive,
Nuclear Precinct - ANSTO
Executive Director-ANM

Presentation Outline

- Introduction and Background
- Synroc development
- SyMo Design considerations
- SyMo Facility Construction and Equipment
- Operational Readiness
- Synroc in the Future

Introduction and background

Comparison of treated waste volume

Synroc development

Evolution of Synroc

Gregg et al, 2020. Synroc technology perspectives and current status. Journal of American Ceramic Society. Vol 103 -Issue 10

ANM and Development of Synroc Project for Mo-99

SyMo

- Pre 2010 -laboratory and modest pilot scale testing of processes
- 2012 AustralianGovernment funding
- Technical maturation
- Industrial scale facility -SyMO

SyMo Objectives: A complete solution

Mo-99 Nuclear
Medicine
Production Facility
Liquid Waste

Produced from irradiated target plate dissolution

Mo-99 Waste Treatment Facility

Process Technology

Transformation from liquid to solid waste

Storage

Durable Wasteform

Product ready for long-term storage and final disposal

SyMo Design Considerations

How does SyMo process the ILW?

Parallel design and construction project

Plant Design – an iterative process

- Synroc process flow design and key components
- Inactive engineering demonstration facility
- Instrumentation and Control

Synroc Inactive Engineering Demonstrator

- Surrogate chemistry (chemically identical, no radiation)
- Risk mitigation:
 - Process integration, Process boundaries
 - Training of engineers and operational engineering team
 - Test commissioning strategies

Demonstration of HIP Process Technology

Design features

- Performance spec for automatic pick/place system for HIP
- Nuclearisation of the HIP process
- Tailored can designed for wasteform and final repository requirement

Can Processing – HIPing to scale

H = ~ 500 mm Pre-HIP Canister

Operational Design considerations in Nuclear context

- Materials of construction
 - Change in type of cement for building
 - Equipment materials robustness
 - Shielding
- Process Optimisation
- Equipment maintenance
- Automation

Process Technology Nuclearisation

Rotary Calciner with highly modular designs

SyMo Facility Construction and equipment

Location and timelines of the SyMo plant

Facility Design

- Designed in parallel with technology demonstration
- Allows Facility design to be refined based on lessons learned from the inactive demonstration Facility
- Supporting systems designed around the process
 - Building height
 - Hot cell complex footprint
 - Active ventilation systems tailored around unit process
 - Service systems (heating, cooling, electrical and gases)
 - Integrated Facility design

Hot-cell design

Three zone hot-cell facility;

- High bay powder processing
- II. In-cell CAN process line
- III.Integrated HIP

Integrated Hot Isostatic Press Design

- Configured for remote operations
- Integrated with loading/ unloading of HIP canister
- Serviceability and recovery during operations
- HIP system furnace for single 30 L canister

Instrumentation and Control

- System architecture designed prior to deployment within the SyMo Facility
- Replicate instruments and performance
- Replicate remote operations

Facility Construction

- ANSTO is the design authority
- Building and hot cell constructed by building contractor
- ANSTO responsible for:
 - Design
 - Procurement
 - Process fit-out
 - Pre-commissioning
 - Cold Commissioning
 - Hot Commissioning
 - Operational readiness

Construction Phase

March 2019

Construction Phase

November 2019

Construction Phase

March 2020

Operational readiness

Commissioning Framework for SyMo plant

- Linked to ANSTO Values and WHS Strategy
- Risk based approach utilising ANSTO safety processes
- Simple, visual, effective and utilises ANM experiences
- Commissioning Plans use phases and release certificates to control scope of work for each task
- From unit / system level to integration of the whole plant
- Meets regulatory requirements ARPANSA licence

^{*} Externally determined with a high degree of variability

Synroc in the Future

Synroc Future applications

- Beyond Mo-99 waste
 - Nuclear: Immobilising Pu, Cs and pyroprocessing bearing wastes
 - Molten wastes from Gen-IV reactors
 - Spent fuel waste (HLW)

Conclusion

- SyMo project encompasses engineering and R&D aspects
- Common engineering methods (Calciner, HIP and Scrubbers) have been safely used within a nuclear application
- ANSTO commissioning on track for 2025
- Further applications of tech beyond SyMo are being explored

Further Information

- R. Holmes, A. Abboud, B. Bigrigg, D.J. Gregg, G. Triani, "ANSTO Synroc's Inactive Engineering Demonstrator", paper 19342, Waste Management 19 (WM'19), Mar. 2 7, 2019, Phoenix, AZ, USA.
- R. Holmes, D.J. Gregg, E.R. Vance, M. Smith, G. Triani, "Synroc Waste Treatment Facility for fission-based Molybdenum-99 production", paper 19335, Waste Management 19 (WM'19), Mar. 2 7, 2019, Phoenix, AZ, USA.
- D.J. Gregg, ER. Vance, P. Dayal, R. Farzana, Z. Aly, R. Holmes, G. Triani, "Hot Isostatically Pressed (HIPed) fluorite glass-ceramic wasteforms for fluoride molten salt wastes", J. Am. Ceram. Soc. 103, 10, 2020: 5454-5469.
- D.J. Gregg, R. Farzana, P. Dayal, R. Holmes, G. Triani, "Synroc technology: Perspectives and current status, J. Am. Ceram. Soc. 103, 10, 2020: 5424-5441.
- R. Thunholm, J. Shipley, R. Holmes, D.J. Gregg, B. Bigrigg, P. Fleming, G. Triani, "Technology Maturation of Hot Isostatic Pressing for Nuclear Waste Treatment", paper 20259, Waste Management 20 (WM'2020), Mar 8-12, 2020, Phoenix, AZ, USA.
- R. Holmes, A. Abboud, B. Biggrigg, D.J. Gregg, M. Deura, W. Townsend, P. Fleming, G. Triani, "Current Status of the Synroc Waste Treatment Facility", paper 20263, Waste Management 20 (WM'2020), Mar 8-12, 2020, Phoenix, AZ, USA.

Thank You!

