MOLTEN SALT REACTOR REVIEW

DR MARK HO

Vice President, Australian Nuclear Association (ANA)
Nuclear Analysis Section | ANSTO

^{*} All views expressed in this presentation are my own and not the official position of the ANA or ANSTO

Much Progress since 2014

Building a better reactor

Wish-list

Safety	Meltdown-proof.					
	• Maintain defense-in-depth: Fission product, fuel and TU retainm					
Waste	Burn radioactive 'waste' - close the fuel cycle					
Non-proliferation	Maintain NPT standards – preventing FP, fuel and TU diversion					
	Higher op. temperature and thermal efficiency					
Economics	Reduce fuel fabrication complexity and cost					
	Use existing tech. (as much as possible)					
	Long-lived, lower build cost, lower O/N cost and LCOE					
	Give the regulator a design they can license.					

Typical Pressurised Water Reactor

Fuel bundles

Coolant – doubles as moderator

In-core control rods

 $Temp_{inlet} = ~300$ °C

Temp_{outlet} = ~320°C

Pressure = 150 atm.

Typical PWR
Top view

Molten Salt Reactor

MSRE (1965) Top view Fuel in coolant

Moderator structure - graphite

ex-core control rods

 $Temp_{inlet} = 600$ °C

Temp_{outlet} = 610°C

Pressure = 1 atm.

Why use molten salt?

Features

- Best possible HT between fuel and coolant
- Less complicated fuel fabrication
- Use of radioactive spent fuel much easier
- No fuel structural damage, unlike UO₂ pellets
- No fuel bundle improves neutron economy
- No problem with FP_{gas} accumulation
- Little to no pressurisation necessary
- High BP, but want low MP

Drawbacks

- Removal of fuel clad challenges 'defense-in-depth' philosophy
- Primary coolant loop becomes highly radioactive
- Redox control important.

Source: Oak Ridge National Lab.

NEPA — Nuclear Energy for Propulsion of Aircraft (1946 – 1961)

Aircraft Reactor Experiment (ARE)

Aircraft Reactor Tests (ORNL)

- Primary Coolant & Fuel: NaF ZF₄ UF₄ (53 41 6 mol %)
- Secondary Coolant: NaK @ 1150 K (~880°C)
- Power: 60 MW_{th}
- Dia. 1.4 m outer pressure shell
- Core Power density: 1.3 MW/L (Primary coolant)
- Design life: 1500 hours, 62.5 days
- 500 hrs at maximum power
- Zero power mock up built.
- ANP project cancelled before PWAR-1* was built
 - * Pratt & Whitney Aircraft Reactor 1

Molten Salt Reactor Experiment (MSRE) 1965-1969

- Primary Coolant: FLiBe (7Lithium-beryllium-fluoride)
- Secondary Coolant: FLiNaK
- Fuel: UF_{4 (35% enriched HEU)}
- Moderator: graphite
- Neutron reflector: graphite
- Vessel: Hastelloy-N
- Operating temperature: 600 610 °C
- Operating temperature: ~1 atm
- Power: 8 MW_{th}
- ~10,000 hrs operation using both ²³⁵U and ²³³U
- Plan was to construct a MSBRs for breeding
 233U from thorium
- However, project was discontinued

Intermission (1975 - 2010)

TMSR SF-0, SINAP Shanghai Inst. of Applied Physics

TM	SR-SF0	Design Parameters		
Electric Heating Rated Power @ Core	370kW	Design Temperature @ Main Vessel	700℃ 0.5MPa 10 year	
Temperature of Molten Salt @Reactor Inlet	600℃	Design Pressure @ Main Vessel		
Temperature of Molten Salt @Reactor Outlet	650℃	Design life		
Mass Flow of Molten Salt @ Primary Loop	0-10.0 kg/s	Mass Flow of Molten Salt @ Second Loop	0-12.2 kg/s	
Cover Gas @ Primary Loop	Ar	Rated Power of Passive Exhaust System	12.8 kW	
Molten Salt @ Primary Loop	FLiNaK	Molten Salt @ Second Loop	FLiNaK	

Overall installation drawing

Source: SINAP – ORNL MSR workshop 2016

TMSR SF-1

- 10 MW thermal
- 14,650 x 6cm dia. TRISO pebble fuel
- U-235 enrichment: 17.08 % (13.1 kg)
- Primary coolant: 2LiF-BeF2
- Secondary coolant: FLiNaK
- Operating Temperature: 628°C
- Design discontinued

Geometry and location of pebbles for the TMSR-SF1 containing 11 000 fuel pebbles with a flat-shaped base.

TMSR-SF1

Multiphysics simulation of a molten salt cooled, pebble bed fuelled reactor

Temperature distribution of molten salt coolant for the TMSR-SF1 containing 11 000 fuel pebbles with a flat-shaped base at a power of 10 MW_{th}.

Source: Mardus-Hall, et al.

Relative thermal neutron flux (cool blues) and relative fission rate (hot reds) for TMSR-SF1 containing 11 000 fuel pebbles with a flat-shaped base, control rods fully inserted.

LF-1 (2MW_{th}) construction in Wu Wei, Gansu

Kairos Power – Pebble fuel, FLiBe coolant

- Power: 320 MW_{th} / 140_e
- Reactor Vessel H / Dia (m): 15 / 3
- Primary coolant: Li₂BeF₄ (⁷Lithium-beryllium-fluoride)
- Secondary: Nitrate salt; Tertiary: SH Steam
- Moderator: FLiBe + graphite
- Core T_{in} / T_{Out}: 550 / 650°C
- Fuel: TRISO Pebble fuel, 19.75% (HALEU)
- Online refueling
- Control Rod B₄C in SS316H Clad, in reflector
- Passive shutdown and heat removal
- Longer than 72-hour coping time
- Design status: Conceptual
- Awarded USD 303 M (Adv. Reactor Demo. Program)
- Collaborating with TVA to deploy low power HERMES

Terrestrial Energy – IMSR Integral Molten Salt Reactor

- Power: 440 MW_{th} / 195 MW_e
- Reactor Vessel H / Dia (m): 10 / 3.7
- Primary coolant: Fluoride salt (No ⁷Li or Be)
- Secondary: Solar salt; Tertiary: SH Steam
- Moderator: fluoride salt + graphite
- Core T_{in} / T_{Out}: 620 / 700°C
- Fuel: Molten Fuel salt, < 5% enriched. Also Pu, U-233 etc
- Fuel Cycle: 7 years (core content swap out)
- Control Rod B₄C in SS316H Clad, in reflector
- Passive shutdown and heat removal
- Design status: Conceptual
- Working with ANL to test fuel salt as part of DOE's Gateway for Accelerated Innovation in Nuclear (GAIN) program

Source: IAEA, Advances in SMR Technology Developments, 2020

Moltex Energy SSR - fuel stringers, ZrF₄ - KF salt

- Power: 750 MW_{th} / 300_e, 900_e peaking plant
- Reactor Vessel H / Dia (m): 10 / 6
- Primary coolant: 42% ZrF₄ / 58% KF
- Secondary coolant nitrate salt buffer
- Moderator: none fast spectrum
- Core T_{in} / T_{Out}: 525 / 590°C
- Fuel: 45% KCl, 25% RG PuCl₃, 30% UCl₃
- Molten salt fuel in 451 FAs in hexagonal array
- Fuel Stringer Alloy-91 steel
 - Redox control Zr sacrificial metal
 - Core Burn up: 120 200 GWd/tHM
 - Design status: Conceptual
 - UK / Canadian collaboration
 - Awarded \$50.5 M from Canada, \$2.5 M from DOE

Source: IAEA, Advances in SMR Technology Developments, 2020

Elysium Industries – Molten Chloride Fast Reactors

- Power: 125 MW_{th} / 50_e, 3000 MW_{th} / 1200_e
- Reactor Vessel H / Dia (m): 9 / 4
- Primary coolant: NaCl-XCl_v-YCl_z-UCl_{3/4}
- Secondary coolant Primary w/o Fuel salt
- Tertiary loop SH Steam
- Moderator: none fast spectrum
- Core T_{in} / T_{Out}: 650 / 750°C (Goal 950°C)
- Fuel: PuCl₃-FPCl_v fuel salt
- Enrichment: 10% Pu fissile/(Pu+U total)
 or 15% HALEU
- Core Burn up: SNF/DU/NU (1tHM/GWe-yr)
- Design status: Conceptual
- Working with ORNL to convert SNF into fuel salt as part of DOE's Gateway for Accelerated Innovation in Nuclear (GAIN) program

Source: IAEA, Advances in SMR Technology Developments, 2020

Other notable designs

Terrapower
Molten Chloride Fast Reactor

Thorcon
FNPP Molten Salt Reactor

Molten Corrosion Testing Facility @ANSTO

Static Corrosion Rig

Creep - Molten Salt Testing

- FLiNaK salt composition
- Temperatures: 500°C 750°C
- Argon Atmosphere

- FLiNaK salt composition
- Temperatures: 550°C 850°C
- Argon Atmosphere

NiMoCr Parent/Weld - FLiNaK Corrosion

Closing Thoughts

Wish-list

- Passive safety designs
- Non-proliferation consideration still v. important
- There is a business case for TU burning
- Onus on dispatchable power.
- Use of 3 loops common
- Intermediate salt serves as a heat-bank
- Not waiting on next-gen tech.
- Use of SH Steam cycle and existing alloys
- Strong Gov. funding for a wide range of ideas
- Drive to increase competition in the nuclear sector while building capability with National Nuclear Labs.

Thanks. Questions?

Capture Cross Section

Coolant Comparison

				Heat transfer properties at 700°C				_	
Salt ^a	Formula weight (g/mol)	Melting point (°C)	900°C vapor pressure (mm Hg)	ρ Density (g/cm³)	ρ*Cp Volumetric heat capacity (cal/cm³-°C)	Viscosity (cP)	Thermal conductivity (W/m-K)	Neutron capture relative to graphite ^b	Moderating ratio ^c
LiF-BeF ₂	33.0	460	1.2	1.94	1.12	5.6	1.0	8	60
NaF-BeF ₂	44.1	340	1.4	2.01	1.05	7	0.87	28	15
LiF-NaF-BeF ₂	38.9	315	1.7	2.00	0.98	5	0.97	20	22
H ₂ O (1 atm)	18.0	0.0	N/A	1.0	1.00	1.0	0.58	75	246
LiF-ZrF ₄	95.2	509	77	3.09	0.90	> 5.1	0.48	9	29
NaF-ZrF ₄	92.71	500	5	3.14	0.88	5.1	0.49	24	10
KF-ZrF ₄	103.9	390		2.80	0.70	< 5.1	0.45	67	3
Rb-ZrF ₄	132.9	410	1.3	3.22	0.64	5.1	0.39	14	13
LiF-NaF-ZrF ₄	84.2	436	~ 5	2.79	0.84	6.9	0.53	20	13
LiF-NaF-KF	41.3	454	~ 0.7	2.02	0.91	2.9	0.92	90	2
LiF-NaF-RbF	67.7	435	~ 0.8	2.69	0.63	2.6	0.62	20	8

^a Salt compositions are given in Table 2; nuclear calculations used 99.995% ⁷Li.

Source: ORNL Report: TM-2006 -12 Assessment of Candidate

Molten Salt Coolants for the AHTR

^bComputations based on energy range 0.1 to 10 eV (Sect. 4.1)

^cAs defined in textbooks and in Sect. 4.1.