





#### **Agenda**

1 Introduction / Background

Overview of SMR plant

5 Economics



## Context – changing energy systems

Demand for clean electricity will increase – driven by global development, population growth and decarbonisation of heat and transportation.

Electricity will be the central pillar for future industrial activity





The addressable market is driven by a combination of geographical reach and extent of decarbonisation

## Excludes energy growth



Only 13% global energy is low carbon



- 64% is carbon intensive
- Nuclear is 10% today, most retired by 2050
- Low cost nuclear (LCN) can contribute through replacing share of fossil generation:
- Low convert 20% current fossil fuel to LCN
- High convert 50% current fossil fuel to LCN





- Virtually all heat / industrial is carbon intensive
- · Low cost nuclear can contribute:
- Low scenario 5%

value (£Tn)

Mkt p.a.

2050 (£Bn)

High scenario - 10%

| No. SMRs for each scenario |       |       |  |  |
|----------------------------|-------|-------|--|--|
|                            | High  | Low   |  |  |
| Heat/Ind                   | 1760  | 880   |  |  |
| Transport                  | 1357  | 271   |  |  |
| Electricity                | 1,148 | 459   |  |  |
| Total                      | 4,266 | 1,611 |  |  |
| Cum mkt                    | £6.4  | £2.4  |  |  |

£320

£120



~48% of the world is addressable



- 98% is carbon intensive
- Electricity from low cost nuclear (LCN) can be the source for e-fuels, Hydrogen, direct electric
- · Low convert 10% current fossil fuel to LCN
- High convert 40% current fossil fuel to LCN



We need all sources of clean energy to decarbonise

Nuclear can play a vital role BUT NOT AT ANY COST

SMRs are perfectly suited to many of these applications

## There are a number of mechanisms available to decarbonise today across heat and transport

Clean applications

|  | Fossil Fuel<br>source          | <b> </b> | <b>( )</b> | Hybridisation  Lower emissions due to efficiency improvements                     | Primary fuel based                                                                                  |
|--|--------------------------------|----------|------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|  | Clean<br>generation<br>sources |          | <b>③</b>   | Electrification  Carbon free power generation source dependent                    | <ul> <li>Heat potential</li> <li>Transport for lower power &amp; energy missions</li> </ul>         |
|  | Clean<br>electricity           | •        |            | Sustainable fuels  Carbon neutral due to generation technology but still emitting | Transport for higher power & energy missions                                                        |
|  | and / or<br>heat               | •        | ₩          | Hydrogen  Carbon free depending on generation technology                          | <ul> <li>Peak power</li> <li>Heat</li> <li>Transport for all power &amp; energy missions</li> </ul> |



Sustainable fuels and hydrogen economy need significant clean power and present a further market opportunity beyond pure grid power





- A constant supply of energy (electricity) is much better economically to avoid large storage costs in the form of hydrogen
- More installed capacity of intermittent power sources will be required to enable parallel storage and use of hydrogen and carbon inputs
- The process for generating synthetic fuel / hydrogen must source power from clean sources
- Sources of power with waste heat can help optimise the process
- Many of the process steps produce waste heat that can aid process efficiency



SMRs can be key to green hydrogen production where large amounts of baseload power are needed

## Cost of electricity is a key driver

Single SMR



440MWe 3.5TWh / p.a. electricity



**Electrolysis plant** 



87 m Kg hydrogen p.a.



**Store for Peak Power** 



**Transport** 



Heat for 240,000 domestic homes



~4% UK HGV market (Based on Fuel cell)



### SMR Market in business case

Base / Grant case (derived 2017) assumes:

- 16 units (7 GWe) in UK
- 22 units (9 GWe) Internationally

8% market share scenario accounts for a winnable market position within an increased low-carbon electricity demand driven by power, heat and transport.

#### Total Global Energy Current clean generation will also retire by 2050 Closed Geography Target (8% of low Other addressable = technologies 132 units) Low carbon Addressable geography High carbon

4266

Addressable

(low)

Addressable

(high)

#### Cumulative Units in Service





#### **Agenda**

Introduction / Background

Overview of SMR plant

6 Economics



## SMRs have been around for a while, so why now?

- The UK designed an SMR in the late 1980's early 1990's
- Large reactors can be unaffordable to some governments and private utilities
- <u>S</u>maller physical size important to reduce capital, and risk
- <u>M</u>odularisation is about manufacturability not building huge 1-off structures
- It needs to be about a Power Station not just a Reactor

## Rolls-Royce, Stone & Webster, UKAEA SIR Reactor (1990's)





Power station design:

The principle of lowest LCOE is the primary requirement





## Technology and Innovation Where it Adds Value



#### Reactor Plant

- Conventional reactor system
- Proven materials
- Conventional temperatures

#### Fuel Cycle

- Standard fuel
- Minimal geometric change

#### EC&I

- Digital I&C
- Civils
  - Aggressively modularised civils
  - Off-site construction & build certainty

#### Manufacturing

- Modular manufacture
- Flowline methods

#### Digital

- Substantial digitisation
- Advanced analytics



## Innovation for benefit not for technology sake to reduce:

## Capital Construction period Risk

- Power station design NOT just nuclear reactor
- Smaller in physical size and power output (440MWe)
- Designed for all aspects of lifecycle
- Seismic raft to standardise all plant modules
- **Short construction** period, lower levels of site activity
- **Site canopy** to improve efficiency / remove weather risk from construction schedule
- Commercial separation of ground construction







Our design / appraoch overview:

400 – 450 MWe 3 Loop PWR

Industry-Standard UO2 Fuel

Compatible with Existing Infrastructure

Designed for Road Transport

**Passive Safety Systems** 

Maintenance and Operations Access

Cost reduction - standardisation







#### Build time reduction - Modular Manufacture

Nuclear Island



BOP & systems



Civil construction



Benefits or learner of amplified through a shift from site construction to factory module construction

#### Risk reduction









# Modularisation is a solution to reduce cost, schedule and risk, not a design

## Modularisation approach must deliver benefit

#### Whole plant modularisation

- 85%-95% plant factory fabricated (site dependent)
- Standardisation of product, module sizes and interfaces – improve learner effect
- Production line approach to module manufacture
- Modules sized to reduce factory capital
- Commercial / commodity products
- Use of digital twin design for maintenance

#### Nuclear Island



BOP & systems



Civil construction



Benefits or learner of amplified through a shift from site construction to factory module construction



The Site
Assembly
Facility can
provide major
benefits in
certainty of
costs and
schedule

- Removing the impact of weather:
  - Potential lost days over 4 year construction period ~641 days
  - Equates to ~£867M of deferred spend resulting
  - Avoids potential extension of programme of ~18 to 24 months
  - Overspend from non-re-deployable costs

- The removal of this risk will enable:
  - Certainty on a baseline plan with shorter schedule and lower cost
  - Lower premiums on cost of borrowing
  - Lower LCOE



Average weather assessment at Wylfa - September 201



- Nr of days lost due to Snow and/ or Ground frost
- Nr days lost due to high winds > 10 m/s
- Total lost days due to rain



# A fleet approach can realise further savings to operators

- Rolls-Royce has extensive experience in Aerospace and Marine in monitoring customer assets to optimise performance
- All units can be monitored against the performance of other units and normalised for age and environmental factors
- Central Ops centre analysis will
  - Optimise performance across the fleet
  - Minimise downtime / increase capacity factor
  - Provide early insights into future demands during maintenance schedules
- Sharing of engineering capability across the fleet



Centrally monitoring Ops centre



#### **Agenda**

1 Introduction / Background

7 Overview of SMR plant

5 Economics



#### The electricity economics are dominated by certainty which can bring cheaper financing

#### LCOE sensitivity

assessment

- Cost of financing is the biggest sensitivity
- Function of:
  - Capital
  - Risk (or perceived risk)
  - Time to construct
- Maximise power for no additional capital
- Reduction of maintenance periods
- Digital twin and associated technologies to:
  - Maximise capacity factor
  - Reduce operational costs
- Development aimed at innovation for benefit





## **Electricity Market** pricing

Electricity price is volatile and heavily linked to Oil Price

SMR electricity generation economics is detached from oil price and brings long term certainty



- SMRs provide clean, dispatchable electricity at scale
- Price of electricity from an SMR heavily dependent on financing cost of the plant but provides long term price certainty
- Operating costs of an SMR are fixed, with little variation or external influence



