

Nuclear power for space applications

Dr Mark Ho

Outline

1. Nuclear Thermal **Propulsion**

2. RTGs

Radioisotope Thermoelectric Generators – for electricity.

3. Space Fission Systems (> 1 kW)

Kilopower Reactor

Choices

Not much Solar in deep space

1. Nuclear Thermal Propulsion

Why Nuclear Thermal Propulsion?

$$\Delta V = v_e \ln \frac{m_0}{m_f}$$
$$\frac{m_0}{m_f} = e^{\left[\frac{\Delta V}{v_e}\right]}$$

Tsiolkovsky's equation

The maximum change in velocity is the equal to the propellant exhaust velocity multiplied by the natural log of the initial mass and final mass ratio

- High exhaust velocity is good
- 2. Optimally the initial and final vehicle mass should be as small as possible.

$$I_{sp} = \frac{v_e}{g_0}$$

Specific Impulse (sec.)

The time it takes for one kilogram of propellant to produce one newton of thrust.

Higher specific impulse, means higher efficiency.

Engine selection depends on the mission

Engine type <u>Chemical Rocket</u> <u>Chem. R.</u> <u>NTR</u> <u>Ion drive</u>

Engine name Raptor 1st stage J-2 (SLS) Pheobus 2A NEXT

Propellant CH₄ / LOX LH₂ / LOX LH₂ Xenon

Thrust to Weight Ratio ? >180 55 3.2 v. low

Specific Impulse 330 – 380 s 448 s 925 s 4400 s @6.9kW

Max. Thrust 1,993 kN 1,310 kN 930 kN (tested) 0.236 N

Options other than Hohmann Transfer

- Opposition-Class Mission Characteristics (Used in "90-Day" / SEI Mars Studies)
 - Short Mars stay times (typically 30 60 days)
 - Relatively short round-trip times (400 650 days)
 - Missions always have one short transit leg (either outbound or inbound) and one long transit leg
 - Long transit legs typically include a Venus swing-by and a closer approach to the Sun (~0.7 AU or less)
 - This class trajectory has higher ΔV requirements

NOTE: Short orbital stay missions will likely be chosen for initial human missions to Mars and its moons. Phobos and Deimos

- Fast-Conjunction Class Mission Characteristics (Used in DRM 4.0 and DRA 5.0 Studies)
 - Long Mars stay times (500 days or more)
 - Long round trip times (~900 days)
 - Short "in-space" transit times (~150 to 210 days each way) Question: Can we go faster?
 - Closest approach to the Sun is 1 AU
 - This class trajectory has more modest ΔV requirements than opposition missions

Nuclear Thermal Rocket

- Energy to accelerate propellant to ejection velocity. (E = $\frac{1}{2}$ mv²)
- System mass = Energy source + Propulsion device + Propellant

Hydrogen for Max. Exhaust Vel. (v_e)

Root Mean Square of Speed of Particles

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$
 $R = Gas\ Constant$
 $T = Temperature\ (Kelvin)$
 $M = Molar\ Mass$

@ 295 K (Room Temperature)

@ 3000 K (Reactor Temperature)

_	_
O_2 :	v = 480 m/s
\mathbf{O}_{2} .	v – 4 00 III/3

$$O_2$$
: $v = 1529 \text{ m/s}$

 N_2 : v = 512 m/s

 N_2 : v = 1634 m/s

 CO_2 : v = 409 m/s

 CO_2 : v = 1304 m/s

He: v = 1356 m/s

He: v = 4324 m/s

 H_2 : v = 1918 m/s

 H_2 : v = 6092 m/s

Exhaust velocity improves with the square root of the mass ratio of two gases

Heat Transfer: H₂ is ~6 times more conductive & about half as viscous than air
Hydrogen is a neutron moderator.

10

Neutron cross sections

Incident neutron data / ENDF/B-VII.1 / / MT=18 : (z,fission) total fission / Cross section

Rover / NERVA

KIWI A 1958-60 100 MEGAWATTS 5000 Ib THRUST

(22 kN)

KIWI B 1961-64 1000 MEGAWATTS 50,000 Ib THRUST

(222 kN)

PHOEBUS 1/NRX 1965-66 1000 and 1500 MEGAWATTS 50,000 lb THRUST

(222 kN)

PHOEBUS 2 1967 5000 MEGAWATTS 250,000 Ib THRUST

> (1,110 kN design) (930 kN tested)

Source: U. of Wisconsin

Project Rover / NERVA (1959 - 1972)

Various OKBs (1950s - 1989)

NERVA NRX
"Kiwi"

RD-410

NERVA EX "Phoebus 1B"

RD-410: Thrust = 69 kN, I_{sp} = 900 s

	KIWI-4BE	NRX-A6	Phoebus-2A	Pewee-1
Reactor power (MW)	950	1,167	4,080	507
Flow rate (kg/s)	31.8	32.7	119.2	18.6
Fuel exit average temperature (K)	2,330	2,472	2,283	2,556
Chamber temperature (K)	1,980	2,342	2,256	1,837
Chamber pressure (MPa)	3.49	4.13	3.83	4.28
Core inlet temperature (K)	104	128	137	128
Core inlet pressure (MPa)	4.02	4.96	4.73	5.56
Reflector inlet temperature (K)	72	84	68	79
Reflector inlet pressure (MPa)	4.32	5.19	5.39	5.79
Periphery and structural	2.0	0.4	2.3	6.48
flow (kg/s)				

Reactor Features

- 93.15% high enriched uranium
- hydrogen cooled
- graphite moderated
- Epi-thermal neutron spectrum,
- Orifice sizing for flow distribution
- Neutron absorbing drums
- Varied fuel loading for flux flattening

Source: Westinghouse Astronuclear lab.

1st Gen NTP Fuel Element

Source: Houts et al. Presentation: NASA's NTP project (2017) https://ntrs.nasa.gov/search.jsp?R=20170003378

1 Sv = 100 REM

RADIATION MAP

16

Ionising Radiation

NTPs, then and now

Then (Rover/NERVA: 1959 - 72)

- Engines tested
 - 50,000 to 250,000 pound force (lbf)
 - 222 kN 1110 kN of thrust
- H₂ exit temperature
 - 2,350 2,550 K (Graphite)
- I_{sp} capability
 - 825 850 sec (hot bleed cycle)
- Thrust to weight
 - **-~3**
- "Open Air" testing at Nevada Test Site

Now

- Focus on small NTRs
 - 5,000 15,000 lbf
 - 22 kN 67 kN
- High Temp. fuel under development
 - 2,700 (Composite)
 - 2,990 K (Cermet W matrix with UO2)
 - ~3,100 (Ternary Carbides)
- I_{sp} capability
 - 915 1005 sec (expander cycle)
- Thrust to weight improvement:
 - reportedly up to 6 for small NTRs
- Contained Test Facility at INL
- \$100 million for NTP research (2019)

Design Ref Arch. 5.0

Source: BWXT

2. Radioisotope Thermoelectric Generators

New Horizons
Mission to Pluto
& Kuiper Belt

Stats

Probe 478 kg RTG 57 kg PuO₂ 11 kg Power (t₀) 245 W_e ~4000 W_{th}

Launched: 2006 @ Pluto 2015

Thermo-electric Generator

SiGe + Boron doping

Source: DOE Report, https://www.osti.gov/servlets/purl/1045212

RTG missions

MSL Curiosity Rover

Systems for Nuclear Auxiliary Power (SNAP)

SNAP-3
polonium-210 $\lambda = 5 \text{ months}$ 2.5 W_e

SNAP-9A

plutonium-238 $\lambda = 88 \text{ years}$

 $^{238}\text{Pu} \rightarrow ^{234}\text{U} + ^{4}\text{He}$

25 W_e

AEC Chairman Glenn T. Seaborg, left, compares a SNAP-9A "atomic battery" (bottom center) with a full-scale model of a SNAP-3B atomic battery held by Major Robert T. Carpenter, AEC-SNAP project engineer. (Photo: 434-N-AEC-63-7042. General Records of the Department of Energy, RG 434, National Archives Still Picture Branch, College Park, Maryland)

Pu-238

²³⁸Pu

- Half-life of 87.7 years
- Decays by 5.593 MeV alpha emission
- 1 gram of ²³⁸Pu generates 0.568 W of heat
- Produced by irradiating ²³⁷Np in a High Flux reactor

$$^{237}\text{Np} + ^{1}\text{n} \rightarrow ^{238}\text{Np} \ (\lambda = 2.12 \text{ d}) \rightarrow ^{238}\text{Pu} + \text{e}^{-}$$

Pellet production

Metrology

²³⁸PuO₂ pellet

- Ø 2.76 cm, Length 2.76 cm
- Power: 62.5 W_{th}
- Weight: 150g
- $MP > 2450^{\circ} C$
- Created by sintering ²³⁸PuO₂ granules
- Iridium alloy clad (0.55 mm)

General Purpose Heat Source (GPHS)

Multi-mission RTG

- 8 GPHS stack
- 4.8 kg of Pu-238
- 2 kW thermal power
- 125 W_e initial
- 100 W_e after 14 years
- MMGTR = 45 kg
- Currently NASA has enough Pu-238 for 2 more MMTGRs

HFIR (ORNL) restarting
Pu-238 production

- 400 grams p.a.
- 1.5 kg p.a. by 2025

Radioisotope Heater Units

3. Space Fission Systems

Kilopower Reactor Lunar Deployment Concept

Kilopower Reactor 1-3 kW_e

1000 W: 400 kg
Titanium/Water Heat Pipe Radiator

Stirling Power Conversion System

Haynes 230/Sodium Heat Pipes (Reactor Coolant)

Lithium Hydride/Tungsten Shielding ——

Beryllium Oxide Neutron Reflector

Uranium Molybdenum Cast Metal Fuel

B₄C Neutron Absorber Control Rod

Surface Reactor 3-10 kW_e

KRUSTY: Kilopower Reactor Using Stirling Technology

Flight vs KRUSTY

KRUSTY Experiment

Reactor Testing

Passive, Negative Reactivity Control

The warm criticals proved the simple, stable, passive behavior of the KRUSTY reactor.

In the case below, the reactivity was set so the fuel wants to maintain a temperature of 400 C.

Note: the period of oscillation is rather long in this example (75 minutes) because the passive power draw is very low (only 100 Watts) – just as lower gravity would make a pendulum take longer to swing back and forth.

KRUSTY performance

Event Scenario	Performance Metric	KRUSTY Experiment	Performance Status
Reactor Startup	3 hours to 800 deg. C	1.5 hours to 800 deg. C	Exceeds
Steady State Performance	4 kWt at 800 deg. C	> 4 kWt at 800 deg. C	Exceeds
Total Loss of Coolant	< 50 deg. C transient	< 15 deg. C transient	Exceeds
Maximum Coolant	< 50 deg. C transient	< 10 deg. C transient	Exceeds
Convertor Efficiency	> 25 %	> 35 %	Exceeds
Convertor Operation	Start, Stop, Hold, Restart	Start, Stop, Hold, Restart	Meets
System Electric Power Turn Down Ratio	> 2:1 (half power)	> 16:1	Exceeds

What is lonising Radiation?

20 Alpha (helium nucleus)

1 Beta (electrons)

1 X-ray & gamma (EM waves)

5-20 Neutrons

Relative damage

Combined measure:

Sievert (Sv)

Ionising Radiation Everyday

0.05 μSv Year's dose at nuke-plant

0.09 µSv Year's dose at coal-plant

0.1 μSv Eating a banana

0.4 μSv Background dose / hour

40 μSv 7.5 hour flight

100 μSv 2 weeks inside Fukushima Town-hall

3,500 μSv Australian annual background dose

7,000 µSv CT chest scan

20,000 μSv Australian radiation worker limit (1 year)

50,000 μSv US radiation worker limit (1 year)

100,000 μSv without risk of

4 million µSv Fatal dose

Maximum 1 year dose without risk of developing cancer